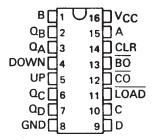
SN54192, SN54193, SN54LS192, SN54LS193, SN74192, SN74193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

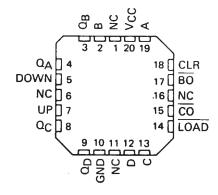
- Cascading Circuitry Provided Internally
- Synchronous Operation
- Individual Preset to Each Flip-Flop
- Fully Independent Clear Input

TYPES TYPICAL MAXIMUM TYPICAL
COUNT FREQUENCY POWER DISSIPATION
'192.'193 32 MHz 325 mW

'192,'193 32 MHz 325 mW 'LS192,'LS193 32 MHz 95 mW


description

These monolithic circuits are synchronous reversible (up/down) counters having a complexity of 55 equivalent gates. The '192 and 'LS192 circuits are BCD counters and the '193 and 'LS193 are 4-bit binary counters. Synchronous operation is provided by having all flip-flops clocked simultaneously so that the outputs change coincidently with each other when so instructed by the steering logic. This mode of operation eliminates the output counting spikes which are normally associated with asynchronous (ripple-clock) counters.


The outputs of the four master-slave flip-flops are triggered by a low-to-high-level transition of either count (clock) input. The direction of counting is determined by which count input is pulsed while the other count input is high.

All four counters are fully programmable; that is, each output may be preset to either level by entering the desired data at the data inputs while the load input is low. The output will change to agree with the data inputs independently of the count pulses. This feature

SN54192, SN54193, SN54LS192, SN54LS193...J OR W PACKAGE SN74192, SN74193...N PACKAGE SN74LS192, SN74LS193...D OR N PACKAGE (TOP VIEW)

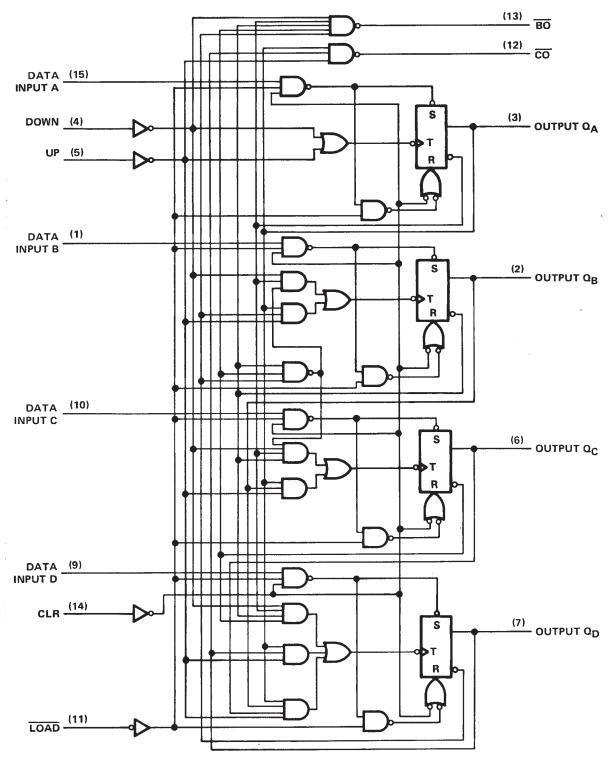
SN54LS192, SN54LS193 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

allows the counters to be used as modulo-N dividers by simply modifying the count length with the preset inputs.

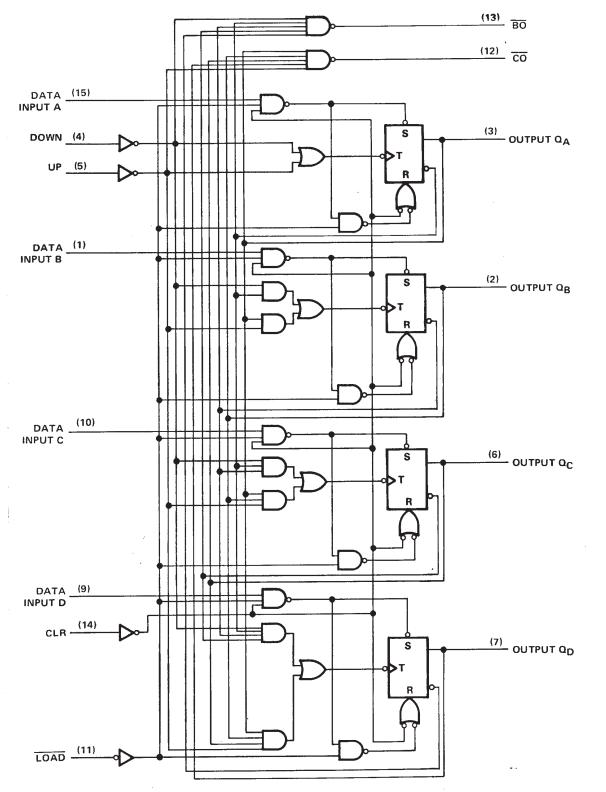
A clear input has been provided which forces all outputs to the low level when a high level is applied. The clear function is independent of the count and load inputs. The clear, count, and load inputs are buffered to lower the drive requirements. This reduces the number of clock drivers, etc., required for long words.

These counters were designed to be cascaded without the need for external circuitry. Both borrow and carry outputs are available to cascade both the up- and down-counting functions. The borrow output produces a pulse equal in width to the count-down input when the counter underflows. Similarly, the carry output produces a pulse equal in width to the count-up input when an overflow condition exists. The counters can then be easily cascaded by feeding the borrow and carry outputs to the count-down and count-up inputs respectively of the succeeding counter.


absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

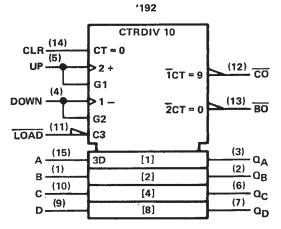
	SN54'	SN54LS'	SN74'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Operating free-air temperature range	-55 to 125		0 to 70		°C
Storage temperature range	-65 to 150		-65 to 150		°C

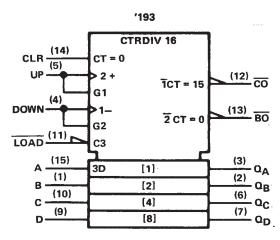
NOTE 1: Voltage values are with respect to network ground terminal.


logic diagram (positive logic)

Pin numbers shown are for D, J, N, and W packages.

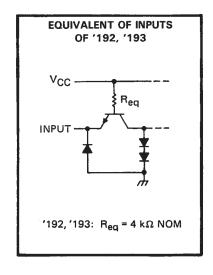
logic diagram (positive logic)

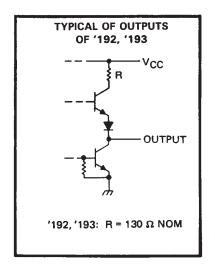

Pin numbers shown are for D, J, N, and W packages.

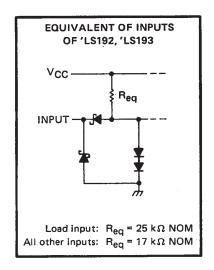


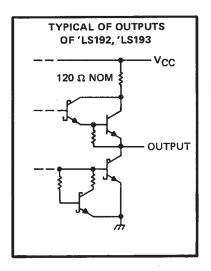
SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

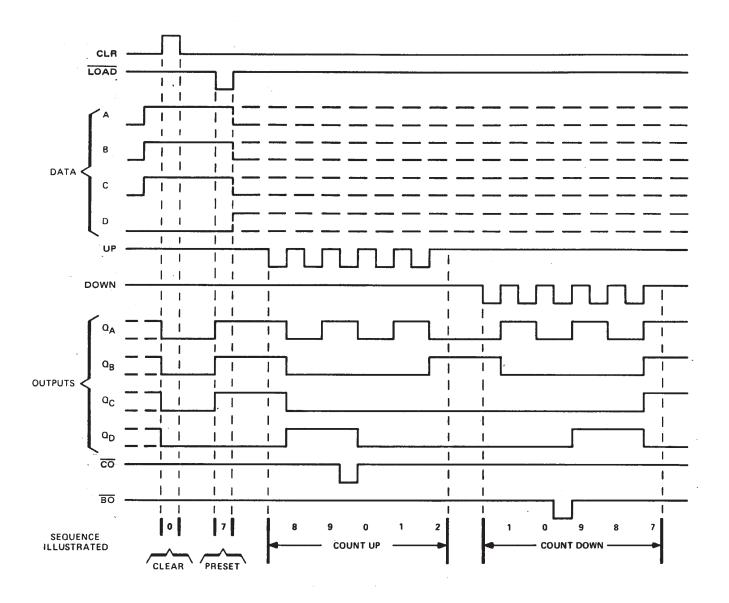

logic symbols†






[†]These symbols are in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

schematics of inputs and outputs



'192, 'LS192 DECADE COUNTERS

typical clear, load, and count sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero.
- 2. Load (preset) to BCD seven.
- 3. Count up to eight, nine, carry, zero, one, and two.
- 4. Count down to one, zero, borrow, nine, eight, and seven.

NOTES: A. Clear overrides load, data, and count Inputs.

B. When counting up, count-down input must be high; when counting down, count-up input must be high.

'193, 'LS193 BINARY COUNTERS

typical clear, load, and count sequences

Illustrated below is the following sequence:

- 1. Clear outputs to zero.
- 2. Load (preset) to binary thirteen.
- 3. Count up to fourteen, fifteen, carry, zero, one, and two.
- 4. Count down to one, zero, borrow, fifteen, fourteen, and thirteen.

NOTES: A. Clear overrides load, data, and count inputs.

B. When counting up, count-down input must be high; when counting down, count-up input must be high.

recommended operating conditions

			SN54192 SN54193			SN74192 SN74193			UNIT
			MIN	NOM	MAX	MIN	NOM	MAX	1
Vcc	Supply voltage		4.5	5	5.5	4.75	5	5.25	V
ГОН	High-level output current				-0.4			-0.4	mA
loL	Low-level output current				16			16	mA
fclock	Clock frequency		0		25	0		25	MHz
t _W	Width of any input pulse		20			20			ns
t _{su}	Data setup time, (see Figure 1)		20			20	-		ns
*************	I a lalation a	Data, high or low	0	-		0			
th	Hold time	LOAD	3			3			ns
TA	Operating free-air temperature		-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CONDITIONS [†]	SN54192 SN54193			SN74192 SN74193			UNIT
			MIN	TYP‡	MAX	MIN	TYP‡	MAX]
VIH	High-level input voltage		2			2			V
VIL	Low-level input voltage				8.0			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN, I _I = -12 mA			-1.5			-1.5	٧
Vон	High-level output voltage	V _{CC} = MIN, V _{IH} = 2 V, V _{IL} = 0.8 V, I _{OH} = -0.4 mA	2.4	3.4		2.4	3.4		v
VOL	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V V _{IL} = 0.8 V, I _{OL} = 16 mA		0.2	0.4		0.2	0.4	٧
Ц	Input current at maximum input voltage	V _{CC} = MAX, V _I = 5.5 V			1			1	mA
ΉΗ	High-level input current	V _{CC} = MAX, V _I = 2.4 V			40			40	μА
liL.	Low-level input current	V _{CC} = MAX, V ₁ = 0.4 V			-1.6			-1.6	mA
los	Short-circuit output current§	V _{CC} = MAX	-20		-65	-18		-65	mA
Icc	Supply current	V _{CC} = MAX, See Note 2		65	89		65	102	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM INPUT	TO OUTPUT	TEST CONDITIONS	MIN	TYP	MAX	דואט
f _{max}				25	32		MHz
^t PLH	LID	CO			17	26	
^t PHL	UP				16	24	ns
tPLH	DOWN	BO	CL = 15 pF,		16	24	
^t PHL	DOWN	80	R _L = 400 Ω, See Figures 1 and 2		16	24	ns
^t PLH	LIB OR DOWN				25	38	
^t PHL	OF OR DOWN				31	47	ns
^t PLH	1045	0			27	40	
[‡] PHL	LOAD	Q			29	40	ns
t _{PHL}	CLR	Q	7		22	35	ns

 $[\]P_{\text{fmax}} \equiv \text{maximum clock frequency}$

 $t_{PHL} \equiv$ propagation delay time, high-to-low-level output

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time.

NOTE 2: I_{CC} is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V.

tp_H = propagation delay time, low-to-high-level output

SN54LS192, SN54LS193, SN74LS192, SN74LS193 SYNCHRONOUS 4-BIT UP/DOWN COUNTERS (DUAL CLOCK WITH CLEAR)

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

recommended operating conditions

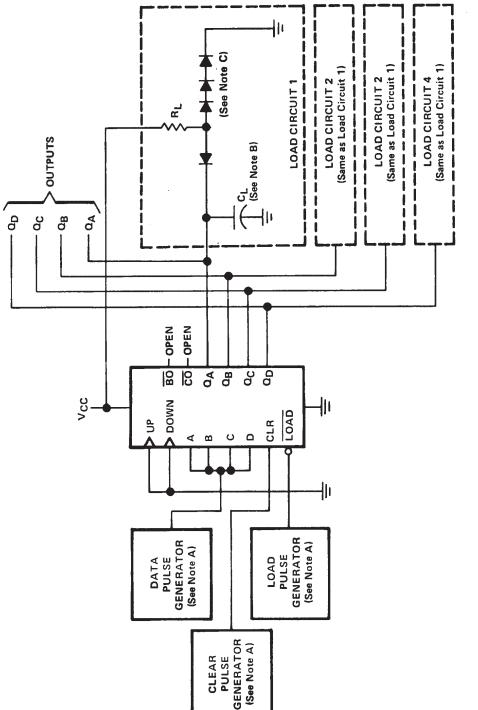
			SN54LS192 SN54LS193			SN74LS192 SN74LS193		
		MIN	NOM	MAX	MIN	NOM	MAX]
Vcc	Supply voltage	4.5	. 5	5.5	4.75	5	5.25	V
ЮН	High-level output current			-400			-400	μΑ
loL	Low-level output current			4			8	mA
fclock	Clock frequency	0		25	0		25	MHz
tw	Width of any input pulse	20			20			ns
	Clear inactive-state setup time	15			15			ns
t _{su}	Load inactive-state setup time	15			15			ns
	Data setup time (see Figure 1)	20			20			ns
th	Data hold time	5			5			ns
TA	Operating free-air temperature range	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS [†]		SN54LS192 SN54LS193			SN74LS192 SN74LS193			UNIŢ	
			٠.		MIN	TYP [‡]	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage	,,,,,					0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I _I = -18 mA				-1.5			-1.5	٧
Voн	High-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V, , I _{OH} = -400 μA		2.5	3.4		2.7	3.4		٧
VOL	Low-level output voltage	V _{CC} = MIN, V _{IL} = V _{IL} max	V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.15 0.35	0.4	٧
l _l	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V				0.1			0.1	(mA
[‡] ІН	High-level input current	V _{CC} = MAX,	V _I = 2.7 V				20			20	μА
IIL	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V				-0.4			-0.4	mA
los	Short-circuit output current§	V _{CC} = MAX			-20		-100	-20		-100	mA
Icc	Supply current	V _{CC} = MAX,	See Note 2			19	∤34		19	⊹34	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions for the applicable type. \ddagger All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

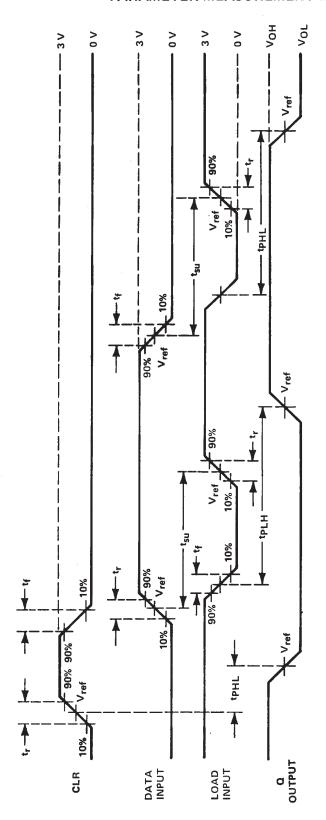
NOTE 2: I_{CC} is measured with all outputs open, clear and load inputs grounded, and all other inputs at 4.5 V.


switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM INPUT	TO OUTPUT	TEST CONDITIONS	MIN	TYP	MAX	UNIT
f _{max}				25	32		MHz
^t PLH	LID	CO			17	26	— ns
t _{PHL}	- UP	CO	ا ا		18	24	
^t PLH			16	24			
^t PHL	DOWN	ВО	$C_L = 15 \text{ pF},$ $R_L = 2 \text{ k}\Omega,$		15	24	ns
^t PLH		_	See Figures 1 and 2		27	38	
^t PHL	UP OR DOWN	UP OR DOWN Q See Figures 1 and 2		30	47	ns	
[†] PLH		_	1		24	40	
tPHL .	LOAD	LOAD			25	40	ns
tPHL	CLR	Q			23	35	ns

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

PARAMETER MEASUREMENT INFORMATION


TEST CIRCUIT

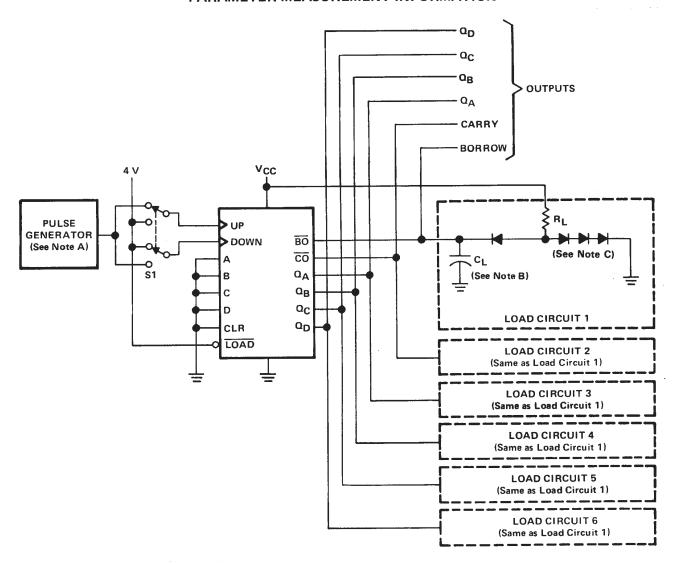
The pulse generators have the following characteristics: Zout ≈ 50 Ω and for the data pulse generator PRR ≤ 500 kHz, duty cycle = 50%; for the load pulse generator PRR is two times data PRR, duty cycle = 50% ë NOTES:

- CL includes probe and jig capacitance.
- Diodes are 1N3064 or equivalent. ன் ப் ப் **ய்**
- t_r and $t_f \leq 7$ ns. V_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193.

FIGURE 1A - CLEAR, SETUP AND LOAD TIMES

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS


NOTES: A. The pulse generators have the following characteristics: Z_{out} ≈ 50 Ω and for the data pulse generator PRR ≤ 500 kHz, duty cycle = 50%; for the load pulse generator PRR is two times data PRR, duty cycle = 50%

- CL includes probe and jig capacitance.
 - Diodes are 1N3064 or equivalent.
- といい と
- t_{r} and $t_{f} \leq 7$ ns. V_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193.

FIGURE 18 - CLEAR, SETUP, AND LOAD TIMES

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTES: A. The pulse generators have the following characteristics: PRR \approx 1 MHz, $Z_{out} \approx$ 50 Ω , duty cycle = 50%.

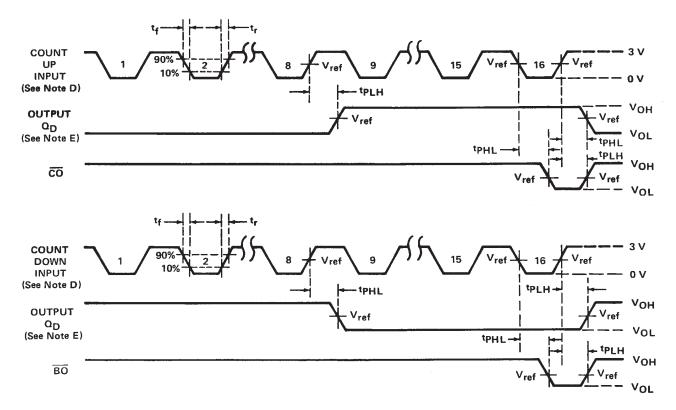

- B. C_L includes probe and jig capacitance.
- C. Diodes are 1N3064 or equivalent.
- D. Cout-up and dount-down pulse shown are for the '193 and 'LS193 binary counters. Count cycle for '192 and 'LS192 decade counters is 1 through 10.
- E. Waveforms for outputs $Q_{\mbox{\scriptsize A}},\,Q_{\mbox{\scriptsize B}},$ and $Q_{\mbox{\scriptsize C}}$ are omitted to simplify the drawing.
- F. t_r and $t_f \le 7$ ns.
- G. V_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193.

FIGURE 2A - PROPAGATION DELAY TIMES

SDLS074 - DECMEBER 1972 - REVISED MARCH 1988

PARAMETER MEASUREMENT INFORMATION

VOLTAGE WAVEFORMS

NOTES: A. The pulse generators have the following characteristics: PRR \approx 1 MHz, Z_{OUt} \approx 50 Ω , duty cycle = 50%.

- B. C_L includes probe and jig capacitance.
- C. Diodes are 1N3064 or equivalent.
- D. Cout-up and dount-down pulse shown are for the '193 and 'LS193 binary counters. Count cycle for '192 and 'LS192 decade counters is 1 through 10.
- E. Waveforms for outputs QA, QB, and QC are omitted to simplify the drawing.
- F. t_r and $t_f \le 7$ ns.
- G. V_{ref} is 1.5 V for '192 and '193, 1.3 V for 'LS192 and 'LS193.

FIGURE 2B - PROPAGATION DELAY TIMES

